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Figure 4: Example FPGA Fabric – (a) Island-
style FGPA fabric with configurable logic blocks
(CLBs), SRAM blocks, horizontal and vertical
routing channels, configurable crosspoints, and
intra-chip I/O blocks (IOBs). For simplicity
SRAM blocks are shown with a similar size as
CLBs, but in a realistic fabric, SRAM blocks
would of be much larger with wider interfaces;
(b) example CLB with a five-input flip-flop-based
lookup table (LUT) and programmable muxes
(M = configuration bits); (c) example configurable
crosspoint implemented using tri-state buffers;
each buffer would have an associated configura-
tion bit.

SoC often requires licensing expensive closed-source IP and the corresponding proprietary FPGA
synthesis and place-and-route tools (i.e., Achronix Speedcore [53], Flex Logix EFLX cores [52]).
There is a pressing need for an open-source embedded FPGA fabric that can: (1) integrate into the
open-source hardware ecosystem; and (2) leverage open-source FPGA synthesis and place-and-
route tools [39, 32].

D.3.2 Approach

Figure 4 illustrates a typical island-style FPGA which includes a two dimensional array of config-
urable logic blocks (CLBs), SRAM blocks, horizontal and vertical routing channels, configurable
crosspoints, and a ring of intra-chip I/O blocks (IOBs). In discrete FPGA devices, the IOBs sup-
port complex industry-standard high-performance I/O standards, however, since CIFER focuses on
embedded FPGA fabrics, the IOBs will actually be quite simple (e.g., some amount of buffering
and potentially a set of registers). There is a vast design space of potential FPGA fabrics, with
each fabric using a specific CLB implementation, SRAM block configuration, number of rout-
ing channels, and crosspoint connectivity. For example, the simple CLB shown in Figure 4(b)
uses a five-input lookup table (LUT) and two output flip-flops that can potentially be bypassed.
More complex CLBs use larger lookup tables (e.g., 6-input LUTs are common), include additional
muxing (e.g., clock inversion, enable inputs, reset signal), integrate hardened logic functional-
ity (e.g., 1-bit full-adder), and include specialized routing connections (e.g., vertical carry chain
connections). FPGAs can have many small SRAM blocks with narrow access widths, or fewer
larger SRAM blocks with wide access widths. Although Figure 4(c) shows fully connected switch
matrices, realistic FPGA fabrics carefully implement sparse connectivity. This rich design space
suggests developing a single open-source instance of an FPGA fabric will not achieve the POSH
program goals. It is unlikely that this instance will meet the system-level requirements across
many different open-source projects. Instead of designing a single open-source FPGA fabric, we
propose to develop an open-source FPGA fabric generator capable of composing parameterized
CLBs and SRAM blocks with configurable interconnect into a complete FPGA fabric suitable for
use in an open-source SoC. To facilitate an incremental development process, the proposed work
will be divided into two parts: (1) development of a parameterized FPGA CLB and SRAM blocks;
and (2) development of the FPGA interconnect and FPGA fabric generator.
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CIFER	Project	Overview	
•  Scalable Coherent Memory System IP Block 

–  Coherent caches & interconnect 
–  Parameterizable on-chip interconnect 
–  Supports a large number of cores 
–  Leverage extensive work on OpenPiton 
–  Interface other POSH cores and IP blocks in a  
cache coherent ecosystem 
 
 

•  FPGA Fabric IP Block (PRGA) 
–  Highly parameterizable design (Python 

configuration) 
–  Generates RTL, configuration logic, Bitstream 
–  Fully open source flow 
–  Uses, but does not modify, the latest VPR 
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Scalable	Coherent	Memory	System	IP	
Block	

•  Enable	large,	open	source,	heterogeneous	SoCs	to	be	created	
•  Includes	coherent	caches,	directories,	and	NoC	interconnect	
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Modifying	Interface	to	Support	RISC-V	
Atomic	Operations	

6	

•  Add	hardware	to	
support	LR/SC	in	
Private	Cache	

•  Add	Fetch-and-Op	in	
LLC	

•  Update	interface	to	
support	Atomic	
Operations	



Quad-Core	Ariane	(RISC-V	64-bit)	Demo	

•  Bootloader	
•  Boot	Linux	
•  Show	4	RISC-V	64-bit	cores	(cat	/proc/cpuinfo)	
•  Demonstrate	Tetris	
•  Demonstrate	Vector	Addition	on	{1,	2,	4}	
cores	with	speedup	
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Verifying	Scalable	Coherent	Memory	
System	

•  Using	memory	litmus	test	cases	generated	
by	Jade	Aglave’s	Litmus	tool	as	modified	for	
RISC-V	by	the	CHERI	project	
–  Running	on	4-core	RISC-V	FPGA	version	of	

Scalable	Coherent	Memory	System	IP	Block	
•  Provides	high	confidence	torture-test	cases	

for	memory	consistency	correctness	
•  Threads	wait	for	randomly-chosen	time	

before	executing	critical	code	
•  Can	run	test	cases	on	FPGA,	identify	failing	

cases	and	simulate	to	investigate	waveforms	
•  Identified	bug	in	our	RISC-V	atomics	

implementation	of	LR/SC	(newly	added)	

Hardware	Thread	0	 Hardware	Thread	1	

...	 ...	

...	 LR.W	R1,0(R2)	

LR.W	R1,0(R2)	 ADD		R3,R1,1	

ADD		R3,R1,1	 SC.W	R4,R3,0(R2)	

SC.W	R4,R3,0(R2)	 ...	

...	 ...	

...	 ...	

Ex:	LR/SC	test	

delay[0]	=	random();	
delay[1]	=	random();	

if	(0:R4==0	&&	1:R4==0	&&	
				0:R1==0	&&	1:R1==0)	
				throw;	//	Should	not	happen	

https://github.com/CTSRD-CHERI/CHERI-Litmus/tree/master/tests/riscv	 8	
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P-Mesh	to	AXI	4	Converter	
•  Enables	connecting	more	off-the	shelf	IP	Blocks	that	support	AXI	
•  Can	help	enable	use	of	AXI	memory	controllers	provided	by	Amazon	F1	instances	

9	AXI	4	 F1	
MC	



F1	Demo	
•  AWS	F1	FPGA	configuration	load	tool	
•  Copy	OS	Image	into	memory	
•  Start	Virtual	Serial	Connection	to	FPGA	
•  Set	FPGA	Virtual	DIP	Switches	to	kick	off	boot	
•  Linux	Boot	

10	



Princeton	Reconfigurable	Gate	Array	
(PRGA)	

•  Open	Source	FPGA	generator	
•  Highly	customizable	
•  Highly	scalable	

–  Capable	of	generating	commercial-class	FPGAs	
•  Highly	extensible	

–  Modularized	workflow:	replaceable	and/or	add	
steps	

–  Supports	different	types	of	configuration	circuitry	
•  Uses	open-source	CAD	tools	(VPR,	Yosys),	but	

does	not	modify	other	tools	
–  Always	ready	to	use	latest	updates	and	new	

features	

11	

https://github.com/PrincetonUniversity/prga	

https://prga.readthedocs.io	



PRGA	Workflow	

12	

This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work. 
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

Fig. 1. PRGA Workflow: PRGA Builder generates RTL and other files needed by the PRGA Tool Chain for a custom FPGA; the PRGA Tool Chain generates
the bitstream for a given target design for an FPGA built with the PRGA Builder.

steps, and users may deviate from the flow in any step, make
changes, then merge back. This allows PRGA users to further
customize the behavior of PRGA and achieve their custom
goals. It’s also welcomed for potential contributors to add
additional or alternative steps to the flow.

The following are our key contributions:
1) Creation and release of a highly customizable, scalable,

and complete framework for building and using custom
FPGAs.

2) Description of the PRGA workflow and the extensibility
available at every step of the flow.

3) Presentation of an end-to-end use case of the framework,
showing its customizability and extensibility.

PRGA is released and available for download at
https://github.com/PrincetonUniversity/prga. More details
about PRGA can be found at https://prga.rtfd.io.

II. FPGA BACKGROUND

A. FPGA Architecture

Almost all modern FPGAs are island-style, that is, or-
ganized in a two-dimensional array of configurable logic
blocks (CLB) and IO blocks (IOB), as shown in Fig. 2.
Each CLB/IOB may contain multiple look-up tables (LUT),
flipflops, and/or other IP cores such as block RAMs (BRAM)
and DSPs. The connections between these logic elements are
controlled by configuration circuitry that can be reprogrammed
for different applications. Between the blocks run plentiful
wiring resources ( 1� in Fig. 2), which can be connected to
CLB/IOBs through connection blocks (CB, 2� in Fig. 2) or
connected to other wire segments through switch blocks (SB,
3� in Fig. 2). The manner that these connections are made are

controlled by configuration circuitry.

Fig. 2. Island-style FPGA Layout: FPGA is organized as a 2D array
of CLB/IOBs and wire segments ( 1�). Wire segments are connected to
CLB/IOBs ( 2�) or other wire segments ( 3�) via configurable switches.

B. Tool Chain

To implement a target RTL design, FPGA programmers
need to run a series of CAD tools to generate the bitstream file
that programs the FPGA, similar to compiling a C program
into an executable binary, only more complex. The minimum
set of CAD tools needed are: a synthesis tool which translates
RTL into gates; a packing tool which packs gates into CLBs;
a place & route tool which places CLBs at physical locations
and uses wire segments to connect them; a bitstream gener-
ator which combines the outputs from the tools above and



PRGA	Updates	
•  Tested	Scalability	to	larger	designs	

–  PicoRV32	(RISC-V)	core	--	DEMO	
•  Can	add	arbitrary	hierarchy	levels	

–  Important	for	physical	layout	tools	
–  PRGA’s	flexible	configuration	bitstream	order	enables	independence	

from	VPR	tool	data	structures	
•  Preliminary	automated	physical	design	for	PRGA	
•  Created	novel	technique	based	on	automated	cycle-free	routing	

to	allow	FPGA	routing	to	be	analyzed	by	static	timing	tools	
•  Worked	with	SymbiFlow/Google	team	to	share	bitgen	code	
•  Working	to	integrate	PRGA	into	coherent	memory	system	

13	



PRGA	Demo	(PicoRV32)	
•  Build	FPGA	(Verilog	and	inputs	to	VPR)	
•  Run	Behavior	Simulation	
•  Generate	synthesis	script	for	Yosys	
•  Run	VPR	for	Place,	Map,	and	Route	
•  Generate	Bitstream	
•  Post	Implementation	Simulation	

14	



PyOCN	Generator	Highlights	

•  Migrated	generator	to	PyMTLv3	
•  New	modular	and	extensible	router	microarchitecture	
•  Added	support	for	new	topologies	and	routing	algorithms	
•  Added	support	for	programmable	floorplanning	and	physical	

design-space	exploration	of	standard-cell-based	layouts	
•  Significant	effort	on	building	PyH2,	a	framework	for	property-based	

random	testing	of	open-source	hardware	 15	
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PyH2:	Python’s	Hypothesis	for	Hardware	
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Novel	Approach:	
Adapt	state-of-
the-art	open-
source	software	
testing	
methodologies	to	
open-source	
hardware	testing	
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Example	of	Using	PyH2	to	Test	Torus	OCN	

always_comb @(*) begin
  if (pkt_dst_x < pos_x) begin
    west_dist = pos_x - pkt_dst_x;
    east_dist = last_col_id
      - pos_x + 'd1 + pkt_dst_x;
  end
  else begin
    west_dist = last_col_id
      + pos_x + 'd1 - pkt_dst_x;
    east_dist = pkt_dst_x - pos_x;
  end
end

•  4x4	torus,	minimal	routing	
•  Passes	directed	tests	
•  Passes	“standard”	random	tests	

•  8x8	torus,	minimal	routing	
•  Passes	directed	tests	
•  Fails	“standard”	random	test	with	
–  100s	of	cycles	
–  1000s	of	packets	

•  PyH2	is	used	to	test	torus	
•  PyH2	spent	about	~20	min	trying	
many	different	network	sizes,	
packets,	and	payloads	

•  PyH2	used	auto-shrinking	to	
find	a	small	failing	test	case	
which	could	be	debugged	in	a	
few	minutes	
–  single	packet	
–  zero	payload	
–  design	to	5x5	Torus	



18	

Demo	of	Using	PyH2	to	Test	Queue	
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deque
Python

module Queue
#(
 parameter p_data_width  = 32,
 parameter p_nentries = 2,
 parameter c_count_width = $clog2(p_nentries+1)
)(
 ...
 input  logic                     enq_en,
 output logic                     enq_rdy,
 input  logic [p_data_width -1:0] enq_msg

 input  logic                     deq_en,
 output logic                     deq_rdy,
 output logic [p_data_width -1:0] deq_msg,
);
 ...
 assign deq_ptr_next
  = ~deq_en             ? deq_ptr :
    deq_ptr == last_idx ? 'd0 : deq_ptr + 'd1;
 assign enq_ptr_next
  = ~enq_en             ? enq_ptr :
    enq_ptr == last_idx ? 'd0 : enq_ptr + 'd1;

 assign count_next
  = enq_en & ~deq_en ? count + 'd1 :
    deq_en & ~enq_en ? count - 'd1 : count;

 assign enq_rdy = count < max_size;
 assign deq_rdy = count > 'd0;
 assign deq_msg = data_reg[deq_ptr];

endmodule

Verilog	Queue	Implementation	

Using	Method-Wrapped	Queue	

PyMTL	Reference	Model	

def test_auto_tick():
  dut = RTL2CLWrapper(
    QueueVRTL( Bits16, num_entries=2 )
  )
  dut.elaborate()
  dut.apply( ImportPass() )
  dut.apply( AutoTickSimPass() )
  dut.lock_in_simulation()
  dut.sim_reset()

  dut.enq( b16(0xdead) )
  dut.enq( b16(0xbeef) )
  assert dut.deq() == 0xdead
  assert dut.deq() == 0xbeef

from collections import deque
from pymtl3 import *

class QueueFL( Component ):
 def construct( s, num_entries=2 ):
  s.q = deque( maxlen=num_entries )

 @non_blocking( lambda s: len(s.q)<s.q.maxlen )
 def enq( s, msg ):
  s.q.appendleft( msg )

 @non_blocking( lambda s: len(s.q) > 0 )
 def deq( s ):
  return s.q.pop() 



Goals	for	Integration	Exercise	
•  Integrate	Scalable	Coherent	Memory	System	
IP	Block	with	other	POSH	IP	(processor	core,	
accelerator,	or	I/O)	

•  Utilize	POSH	designs	as	input	designs	to	PRGA	
•  Apply	PyH2	(Python	Hypothesis	for	Hardware)	
to	other	teams’	designs	identify	bugs	

19	



Team	
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https://github.com/PrincetonUniversity/openpiton	 https://github.com/PrincetonUniversity/prga	

https://github.com/cornell-brg/posh-ocn	



The	views,	opinions	and/or	findings	expressed	
are	those	of	the	author	and	should	not	be	
interpreted	as	representing	the	official	views	or	
policies	of	the	Department	of	Defense	or	the	
U.S.	Government.	
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